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A set of programs is developed to calculate algebraically the effective action for a gauge 
system with fermions and arbitrary external sources on a lattice. In particular a strong 
coupling series for QCD is derived. 

0. INTRODUCTION 

This paper is a sequel to [ 11, where a strong coupling expansion was developed for 
the free energy of lattice gauge systems with the standard one-plaquette interaction 
including fermions. This investigation is part of a program aimed at making explicit 
calculations in quantum chromodynamics in the strong coupling region. 
Extrapolation schemes then have to be used to translate these results to the weak 
coupling, physical region. The basic method, the effective action method, was 
developed in [2, 31. It uses the Euclidean version of the action on a four-dimensional 
lattice. The gauge fields are integrated out of the generating functional and the 
remaining integral is rewritten in terms of elementary meson- and baryon-fields. The 
object of the present paper and [l] is to calculate the effective action thus obtained as 
a series in the parameter p = l/g’, where g is the gauge coupling constant. In [ 1 ] the 
terms of the free energy (logarithm of the generating functional) in a certain order in 
/3 were expressed in terms of the one-link free energy. In the present paper specific 
choices for the gauge group are made (SU(3) or U(3)). This allows the free energy 
functional to be obtained in terms of the (elementary) meson and baryon fields. 

In Section 1 the structure of the calculation is described, and in Section 2 technical 
details are discussed. In Section 3 the implementation on a computer and the results 
concerning the effective action are discussed. In Section 4 the effective potential is 
calculated as a sample application. The effective potential determines the vacuum 
expectation value of the meson-field in the saddle point approximation, The saddle 
point approximation consists of expanding the fields around their vacuum expectation 
values and is motivated by the large N limit. The meson part of the action is propor- 
tional to N in this limit, which exhibits the parameter l/N. Also numerical results 
substantiate the approximation for N = 3, cf. [2, 31. This remains true for the full 
action, including baryons. 
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In general, the aim is to calculate the coefficients of /?” as accurately as needed, 
Section 5 contains the conclusions. 

1. METHOD 

The generating functional for n-point functions using the lattice regularisation and 

where 

and 

Euclidean action is given by [5] 

Z(J, fj, ‘I) = 1 DI+? Dy DU exp 

s, = x P(x) Pi U(x, p) w(x + a@> + W(x + UP) P,’ u+ (x, Pu> v(x) 
x,lA 

- y- P(x) Mv(x) 
x 

(1.1) 

(1.2) 

(1.3a) 

(1.3b) 

Here U(x,p) is a gauge matrix UE sitting on link (x, x + aP) and to keep the notation 
in agreement with the previous papers l/g* is denoted by ,f3 in contrast to the more 
common convention l/g* = P/2N. We will absorb the mass M in the source J. 
Furthermore 

p: = +<r f r,>, O<r< 1. (1.4) 

For r = 1 the fermions are Wilson fermions [ 5 ], whereas the case r = 0 corresponds 
to Susskind fermions, cf. [2,3]. The composite meson- and baryon-fields are defined 
by 

~Jjxx) = w”“(x) V,,(x), (1.5a) 

N!S’=’ “‘““(X)=&,l...nNWn’=‘(X) **- l/P”““(x), (1.5b) 

N!&1.. .,,(x) = E~‘-‘““V,,,,(X) -a. Pa,,,(x), (1.5c) 

where a = 1 ,..., N are color indices and a, /I = l,..., n are noncolor (flavor and Dirac) 
indices. By defining A, and AL on a link L = (x,x + a@) as 

2; u = y7(x),,P;ao l&x + dy, (1.6a) 

Ai a = lp(x + uqII, P; aq ly(Xp, (1.6b) 
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the generating functional may be written as 

Z(J, If, q) = j Dp Dty DU exp 
I 
S, + C tr(A, U, + A, U,+) + source terms . (1.7) 

L I 

First we want to perform the gauge field integration yielding a strong coupling series, 
/I = l/g* + 0, for the free energy functional 

W@,A,A)=logj DUexp /3x Tr U,,+c Tr(A-,U,+A,U,t) . 
I I 

(l-8) 
.P L 

The subsequent integration over the fermions and the transformation from composite 
to elementary meson- and baryon-fields was dealt with in [2, 31. 

In [l] the series (1.8) was obtained up to /3” for arbitrary sources A, and AL. The 
coefficients of the various powers of /I were obtained as a sum of terms, each a 
product of derivatives of the one-link free energy 

W, = log 1 DU, exp(tr(A, U, + A, U,‘)}. (1.9) 

One such term will be called a W-bank in the following. 
The one-link free energy is expressible in terms of color-neutral combinations of 

the A, and AL. The number and type of independent color-neutral combinations 
depends on the gauge-group involved so at this stage a specific choice has to be 
made. For SU(3) the combinations chosen in [6] are 

K = Tr(AA), 1= Tr(Aj)*, ,u = det A, p = det 2. (1.10) 

For SU(N) a suitable choice would be ,u, ,B and 

Tr(AA)P, p = l,..., N- 1. (1.11) 

Exact expressions are known for W,, see references cited in [ 11. We use an 
expansion of W, in terms of the invariants (1.10) 

w,= f Cijk&ii4ck~‘. (1.12) 
i,j,k,/=O 

The coefficients cijkl can be found in [6]. 
The derivatives of W, needed for substitution in the W-banks are 
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and we need these in a form that makes every color index explicit but leaves 
derivatives of W, with respect to the invariant combinations (1.11) implicit. i.e.. 

x coefficient * (derivative of W, w.r.t. invariants) 

* n (derivatives of invariants w.r.t. A and A). (1.14) 

The derivatives of invariants with respect to A and 2 give colored objects of a limited 
number of types. For SU(3) there are 13: 

@, Eabc, E,bc, Aab, Aa,,, (AA)ab, (jA)‘,,, 

(AAA)“b, (A;I@,, cabP~cdqAPq, EabPEcdqfiPy, 

&aPq~brsA’pASq, ~~~~~~~~~~~~~~~~~ (1.15) 

Contraction of color indices and replacement of A and 2 by their expression (1.6) in 
terms of fermion fields then gives the terms of (1.14) in terms of (composite) meson- 
and baryon-fields (1.5). In an intermediate stage of the calculation the concept of 
radicals is used. A radical is defined with reference to a string of neighbouring sites 
q=ro, rly r2r-rrky rk+l’p to be 

R”b(py d@) = wbO,,(d P50aINA(rl)a’BI P4’a2NA(r2)a*D2 

X .a- Ndf(rk)ak4kP4kok+, yPk+‘(p), (1.16) 

where s = (r,, r2 ,..., rk). The a and p represent both Dirac and flavor indices; the P’s 
are unity in flavor space and in dirac space they are given by 

P = Pi = f(r + y,) if ri+, = ri - 8, 

= P; = +(r - y,) if ri+, =ri+au. (1.17) 

Simple radicals are 

Aob(x, x + a’) = R”,(x + au, x)( )1 (1.18a) 

Aub(x, x + aw) = Rab(x, x + a’)( ). (1.18b) 

The combination rule for two radical is 

R”b(p7 Cl)+,) Rb,(% r)(S2) = R’,(P, r)@23 4, S,>* (1.19) 

In the final result of the calculation only colorless objects can occur. Thus radicals 
must be either self contracted, (giving rise to meson loops) or saturated by E’S (giving 
rise to baryon-antibaryon combinations connected by strings of mesons). A 
combination with one baryon and one antibaryon is formed by 

E .,,,,,(P)R%,(p, q)(S,) R%,(P, ~)(%)R%,(P, 4)(S,) &b1bzb3(q) (1.20) 

= N@&3&?) WY, (P, 4)(s,) ~%JP~ 4)(s,) @,JP, 4)(+) N!.9”‘“2”3(P)l 
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where N = 3 and 

@,(p, q)(s) = [q] PDy,N~(~dylg, P6’yz~44y*g, .e. NWG)~~~,P~~,[PI (1.21) 

in which s = (r , ,..., r,J and the p and q in square brackets are added because they are 
needed to determine the P’s by (1.17). Self contraction of a radical leads to a 
mesonloop, 

R”,(PT PN- , ,..., rk) = -N~(p)“k+l,oP4~1,,h!d(r,)“l,, 

X *a. NX(rp8*Pb~nk+,. (1.22) 

Thus the form of terms of (1.14) is established as a product of 

6) a coefficient, 

(ii) a product of derivatives of the one-link free energy with respect to the 
invariants (1.1 l), 

(iii) a product of mesonloops (1.22); baryon diagrams (1.21) and the 
generalization thereof to diagrams containing more than one baryon-antibaryon pair. 

For some applications all terms may be relevant, as for instance, for investigation of 
chiral invariance of the effective potential, and for calculations involving Susskind 
fermions (r = 0 in (1.4)). 

But for calculations involving Wilson fermions (r = 1) in the saddle point approx- 
imation, use can be made of the fact that combinations P”, HP;‘, E = + or -, vanish 
if the vacuum expectation value. aY = vll is substituted for the mesons. In the Wilson 
case P,’ and Pi are orthogonal projectors. Such a combination Pi, HPp” will now be 
called a “backtracker.” 

In calculating the meson propagators in the saddle point approximation for Wilson 
fermions, terms with more than two backtrackers cannot contribute and for meson 
four-point functions the same is true for terms with more than four backtrackers. 

Most of what follows is independent of the value of r in (1.4) but all examples will 
refer to the case r = 1. 

Within the effective action framework a choice can be made concerning the form 
of some higher order terms. A local combination of a baryon and an antibaryon can 
always be rewritten in terms of meson fields, because of the identity 

abc 
& %w = sysb,sc, - Bb,q + Pq(6”,dC, - dbpS=J 

+ 6°,(6b, iv, - sb,dCp). (1.23) 

Or differently stated, the three fields d(p), 9(p), and s(p) needed to describe color 
invariant combinations of y”(p) and 1+7,(p) are linearly independent but do have 
higher order algebraic relations. The single site contributions of ~5’3 pairs are 
important and we choose to rewrite them in terms of meson fields. 

Furthermore the form of (1.14) has to be refined to make the baryon content of a 
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FIG. 1. Configuration that leads to ambiguous contributions to the baryon propagator. 

term explicit. This is due to the fact that factors p or ,3 may appear implicitly on 
some links and since, for L = (x, x + a”) 

,uu,=N!s n,...,,v(X+u”)P;a~D, ...plfa,Y4~~(X)41...B (1.24) 

such a p may change the baryon content of a term. If the term contained no explicit 
baryons the content will be changed from 0 to 1; if the term contained one baryon- 
antibaryon pair the content may change from 1 to 0 or to 2. A product ,ufi on a link 
can (and will) be expressed in meson fields only. The baryon content of a term can be 
made explicit by expanding each derivative of the one-link free energy (w.r.t. 
invariants) in the number of uncompensated p or p’s. Thus, if g is such a derivative, 
expand it as 

+ Pug,&,& K, A> + /72&(47, K, A) + *** . (1.25) 

Ambiguities in the saddle point value may arise after uncompensated p’s have been 
added. Of course there are no ambiguities once the fermion fields are integrated out 
exactly, but the saddle point value will depend a little on the way the uncompensated 
p’s are treated. Consider, for example, the term depicted in Fig. 1. There CC’ and 
BB’ are uncompensated p or ,Z’s. Now there are two possible choices to eliminate two 
of the three E’S, A, B’, and C’. The first is to contract A and C’ (and A’ and C), in 
which case the result does contain one baryon-antibaryon pair and has no 
backtrackers. The second is to contract A and B’ (and A’ and C), in which case the 
result of course again contains a baryon-antibaryon pair, but now has three 
backtrackers. In the Wilson case the first possibility therefore yields a term that 
contributes to the baryon propagator in the saddle point approximation, whereas in 
the second case the resulting term is zero. Fortunately these ambiguous terms are 
small, cf. Section 4, which supports our use of the saddle point approximation. 

2. TECHNICALITIES 

In this section we describe the calculational scheme that leads from a W-bank (a 
term in the expansion of the free energy) to a series of terms of the eventual effective 
action. The structure of a W-bank was explained in [ 1 ] and the SCELFE manual [7]. 
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A detailed structure of the calculation and description of the computer algorithms 
will be given in a second manual [8]. Here we will only discuss the global structure. 

The geometrical structure of a W-bank is given by a small number of sites, at most 
2k + 2 in a term of order pk. 

In a W-bank the product of a number of derivatives (1.13) occurs. For each such 
derivative of a one-link integral a series of the form (1.14) has to be substituted. The 
calculation thus splits up into a number of stages, or levels. On a normal level 
(“normal” to distinguish it from mu- and epsilon-levels, described below) a term from 
the series is selected. At this stage of the calculation color indices are made explicit in 
contrast to the situation in the W-banks, where they were implicit. Only the structure 
of the series (1.14) is kept in central memory. So after choosing one term from the 
series the assignment of the right color indices and the sites at the end of the link still 
has to be made. 

The normal levels are numbered from 1 up, the maximum number being 3k + 1 in 
order pk, which is the maximum number of independent links in that order. Partial 
products of terms of level 1 to 1 are also stored at level 1. 

Derivatives (1.13) are needed with 0 < m + n < k,,,, where k,,, is the highest 
order considered in /I. In the order to explain the color index substitution we first 
recall how such a derivative was coded in a W-bank. This was done by giving a 
number of pairs of integers (p, g) = (plaquette number, type), where the type g 
defines the link of plaquette p as in Fig. 2. These pairs refer to the same actual link, 
the link on which the W, to be differentiated resides. Furthermore a type 1 or 2 
denotes differentiation w.r.t. x and type 3 or 4 differentiation w.r.t. A. A unique color 
index assignment can now be made as follows. If a, b, c, and d denote the color 
indices attached to the sites of plaquette number p as indicated in Fig. 3, we make the 
substitution 

(a, b, c, 4 -+ (a4p-3, a4p-29 a4g-1, a4J (2.1) 

Defining the cyclic permutation q by 

fj: (L&3,4) + (4, I, 2,3)9 (2.2) 

this implies that the pair (p, g) gives rise to the color index Pair (a+ 4 + gT Q,- 4 + ,,& 

x+a” 3 x+ap+a” 

4 

r-l 
k-3 

2 

x x+ap 

FIG. 2. Numbering of the links of an oriented plaquette, g = l,..., 4. 

581/54/2-4 
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FIG. 3. Color indices and 

(d) 
a (a) 

aAa, 

differentiation type corresponding to a link of an oriented plaquette. 

The first index of this last pair corresponds to an index a2,+, in (1.13) and will 
become a lower index in the result of the differentiation, and similarly the second 
index will correspond to an a,,,, and become an upper index. For example, suppose 
that in the derivative needed at some place there are in total nz derivatives w.r.t. A. If 
the ith pair (p,g) of this derivative in the W-bank with g > 3 is (p’, g’), C1*i-, in 
(1.13) is to be replaced by u4p,--4+g, and a2i by a4,,I-4+,,gf. Similarly, if the jth pair 
with g < 2 1s (~“3 g”), az(m+j)- 1 has to be replaced by u4p,,-4+n,j and az(,+n by 
a 4p"-4+vg"' 

In the series (1.14) there are still some color indices implicit, for example, p and q 

in ~~~~~~~~~~~~ because this expression is denoted by a type number and the external 
indices a, b, c, and d only, see [8]. For these dummy indices also an explicit index is 
substituted. 

When at a certain level a specific term has been singled out and the color index 
assignment and the assignment of the sites of the link have been made, the product of 
this term is made with the partial product of the terms up to the last level. Such a 
partial product consists of deltas, epsilons, and radicals. Making the product means 
that deltas are eliminated if one of the indices occurs elsewhere and the radical with 
common color indices are combined according to the rule (1.19). Two epsilon 
symbols with more than one index in common can also be directly eliminated, 
yielding a number or a delta symbol. 

For the gauge group U(3) with the choice K, 1 (1.10) and tr(AA)3 for the 
invariants, the last normal level would contain the end result, the contribution to the 
effective action. For SU(3) some more steps are necessary that are described below. 
Up to now, instead of tr(AA)3 we have used the product ,u,E as the third invariant, 
because the U(3) results are then easily derivable from the SU(3) results. But to 
calculate U(3) up to higher order in /3 it is simpler to use tr(AA)3. 

In case of SU(3) a subseries gi in (1.25) has to be substituted on each link. This is 
done at the next level, the mu level. The choice of gi is indicated by labelling the 
derivatives of the one-link free energy w.r.t. the invariants with the number of uncom- 
pensated p’s added and the number of uncompensated p’s. According to the 
restrictions given in Section 3 these extra labels can be (0, 0), (1, 0), (2,0), (0, l), or 
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(0,2). The product at the highest normal level is then multiplied by the uncompen- 
sated p’s and p’s at this mu-level. 

If two epsilon symbols have only one index in common or are attached to the same 
point and have none in common, the result of contraction gives a sum of two, respec- 
tively, six terms. Therefore on top of the normal level and mu level, so-called epsilon 
levels are made, one for each pair of singly or not-contracted (but contractable) 
epsilons. At each of these epsilon levels again a choice has to be made from two or 
six possibilities. The number of these epsilon levels lies between 0 and 4k in order pk. 

The product of the highest epsilon level is the contribution to the effective action. 
The baryon and meson content is coded in a form corresponding to (1.20) and (1.22). 
For (1.22) this is done by giving the sequence (p, ri ,..., rk) and changing the sign of 
the overall coefficient. For (1.20) the site q = (sJO in which the antibaryon sits, the 
site p z (sJk,+ I where the baryon is located and the three (possibly empty) strings si 
between q and p are given. More complicated baryon terms are discarded up to now, 
cf. Section 3. 

After a contribution to the effective action has thus been completed, it is compared 
to terms previously generated and put in a buffer. If it has the same structure as one 
already present, its coefficient is added to that in the buffer, otherwise it is added at 
the end of the buffer. If the buffer is full it is written to a disk. Later a comparison 
between terms in different buffers still has to be performed in order to add terms of 
the same structure. 

3. IMPLEMENTATION AND RESULTS 

First we discuss some restrictions that are made at present in the implementation. 
In order to be able to calculate the baryon propagator and baryon-meson coupling 

and scattering amplitudes we retain terms with only one baryon-antibaryon pair 
(with the baryon and antibaryon at different sites), but discard terms containing two 
or more of such pairs. 

Also a restriction is made regarding the number of uncompensated p’s and p’s, cf. 
(1.25). As the number of those p’s in a term increases, the contribution from such a 
term decreases quite rapidly (cf. Section 4). Furthermore, at p = 0 contributions of 
order (,@)’ may already be neglected because of their smallness (in the Wilson case 
they vanish). In general, the addition of many ,u’s leads either to many baryons (and 
those terms are discarded) or to baryon loops. In Appendix A an example is given 
with four $s. Such terms turn out to be small. The remaining possibility is that the 
P’S form a baryon-antibaryon combination with a long string of mesons in between. 
On the two plaquettes of the second order calculation for SU(3) each two sites can be 
connected by a string of three links and corrections due to longer strings from long 
series of p’s are down by factors comparable to the one calculated in Appendix A. 
Therefore, terms with more than three uncompensated p or ,U’s are neglected. 
Furthermore, if a term ,u3 or ,C3 in (1.25) is used, many baryons arise of which most 
have to be compensated in order to end up with at most one baryon-antibaryon pair. 
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This compensation requires that the diagram without those p’s already contains at 
least two baryons and antibaryons. The contributions of such terms are very small 
and are therefore neglected. To summarize, we keep terms that have: 

(i) no more than 3 uncompensated p and ,L’s in total, and 
(ii) no more than 2 uncompensated p or p’s on any one link. 

The programs to implement the calculational scheme of Section 2 were written 
mostly in Fortran and partly in the CDC assembler language Compass. They make 
extensive use of the 60 bit word structure of the CDC machines and of the shift and 
mask instructions available to manipulate parts of these words. The programs were 
executed on a CDC-cyber 173 with operating systems NOS/BE level 538 of 
NIKHEF-H [9] and a CDC-cyber 170-7.50 with operating system NOS/BE level 552 
of SARA [lo]. 

In first order in p there is only one W-bank that leads to 3932 terms of the 
effective action and requires 1979 CPU-set on the cyber 173, if any number of 
backtrackers are allowed (but only one baryon and antibaryon). Of the 54 terms in 
second order in p one needs only to process 12, as the others can be obtained from 
these in a simple fashion. Until April 1983 only terms with at most 4 backtrackers 
and one baryon and antibaryon had been calculated. These calculations require about 
45 CPU-h/term on the CY 173 and result in about 85,000 contributing terms per 
incoming term. 

4. THE EFFECTIVE POTENTIAL 

As an application of the effective action, the effective potential will be calculated in 
this section. We will restrict ourselves to Wilson fermions (r = 1). The U(3) effective 
potential is obtained by inserting the vacuum expectation value for the meson field in 
the effective action [2, 31 

v = - S(./#F = ull)/vol. 

The effective potential can be expressed as 

(4.1) 

(4.2) 

where, for N, flavours of equal mass, 

V, = -4NNAln u - Mu). (4.3) 

In (4.2) V, and V2 are functions of v that will be calculated below. 
The extremum of the effective potential determines one relation between M and V, 

and fitting the pion mass leads to another relation. Together these determine the /3- 
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dependence of M and v. For vanishing pion mass the expansion of M and v start off 
as [2,31 

(4.4b) 

Here MC is the critical value for the mass parameter, for which the pion mass 
vanishes. 

Here we shall only be concerned with the determination of I’, and V,. To calculate 
these from the effective action one needs to calculate traces of products of the 
projectors Pi. This can be done quite elegantly with a method devised by Stamatescu 
[ 111, with a computer program written by Lang [ 121. The results can be summarized 
as 

v, = -ivNf+ (2v)4, (4.5a) 

v2+'-NNf $(Zv)"+ 
I 

Jg(2v)" (4.5b) 

+qq2v)wf+ ;*yyi4 (2v)16 (Nf+4N:+4N;)!. 

Note that v = f at /3 = 0. 
The terms of order v I6 in (4.5b) are spurious in the sense that they would not have 

occurred in the effective potential if the invariant tr(Ai)3 had been chosen instead of 
det A * det 2 (recall the discussion in Section 1). Therefore, they must be small in 
order for this approach to make sense. From Table I it can be seen that this is indeed 
the case even for Nf= 4. As the effective expansion parameter is proportional to 
N,IN the case of many flavours should not be taken too seriously. 

TABLE I 

Coefficients of Different Powers of (2~) in -8V,/N N, for U(3) 

Nf WY (2u)s (2v)‘6 “/oo” 

1 1.0000 .3821 .OOOl .04 
2 1.0000 .6100 .ooo3 .2 
3 1.0000 A378 .0009 .5 
4 l.OOQO 1.0657 .002 1 1.0 

’ In the last column the promillage of the 16th order terms w.r.t. the sum of the 6th and 8th order 
terms is given. 
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Noteworthy is the size of the O(u8) contributions, which for two flavours is some 
60% of that of O(u6). 

To make contact with the hopping parameter expansion [ 13, 141 the mass 
parameter M should be replaced by 1/2K and the fields resealed to make the coef- 
ficient of the mass term equal to one. For the present formulation this would mean 
that a factor K comes with each projector P *. For the contributions to the potential 
(closed loops) a factor K would come with each U. So the order in u is equal to the 
order in the hopping parameter K. The hopping parameter expansion is known to 
converge slowly [ 121 and this is substantiated by the above results for U(3) and the 
results below for SU(3). 

For SU(3) the loop expansion method developed in [2] leads, after integrating over 
the baryon fields, to an effective meson action 

S,,,(Jf) = S(M) + ns&f> + O@‘>. (4.6) 

The effect of S, is rather small. It is a term due to hopping of the meson field 
dependent baryon propagator. It will be neglected here, hence everything is to O(A’). 
Expressing the effective potential again in the form (4.2) now leads to the result that 
V, is again given by (4.3) and V, by 

V, = -NN, + (20)~ + 
1 

(4.7) 

Before giving V,, we introduce a parameter that counts the number of uncompen- 
sated ,u or p’s in the contribution. Let tp denote p uncompensated ,u or ,ii’s. The 
numerical value of 5 is 1. Then V, is given by 

V,=-+N’-NN, $(2~)‘+$(2u)” 
I 

(20)’ N, + $ (20)” 

+ $ (2~)” N, + $ (2~)‘~ [ 768 - 6945 + 8 lr* - 54r3 ] 

+ $ (2~)” N,[-781 - 13885 + 162<’ - lo8y3] 

+ $ (2~)” N;[-5415 - 1388{ + 162r* - 108Y3] 

(4.8) 
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TABLE II 

Fermion Contributions to -8VJN N, for SU(3) and N,= 2 

Coeff. of 
WY 

4 1 .ooo 
6 1.000 
8 .610 

10 .791 
12 -.449 -.201 ,023 -.016 
14 .026 
16 -.048 -.060 .005 -.004 
18 .OOl 
20 -.0004 
22 .003 
24 ,001 

These results are displayed in another way for two flavours in Table II. With the 
restrictions defined in Section 3 terms up to order vz4 appear. From order VI* on 
contributions of order 4” and higher do exist but have been neglected as explained in 
Section 3. Both from (4.8) and Table II one can see that coefficients of higher orders 
in < become small. Also it can be seen that terms with possible ambiguities (a subset 
of the terms or order <*) are rather small, cf. Section 2. The highest order in the 
hopping parameter for which the contributions are still considerable is 12 and it looks 
worthwhile to keep terms up to first order in <, certainly if one wants to go up to 3 
flavours. 

5. CONCLUSIONS 

The effective action has been calculated for SU(3) up to order /I”. It seems hard, 
due to the amount of computer time needed, to push the series beyond second order. 
It might be possible to do the third order, if one restricts oneself to order <. For U(2) 
and U(3) the prospects are better and U(1) can certainly be done up to order j3”. 

The sample calculation of the effective potential discussed in Section 4 shows that 
the O(v’) contributions to the U(3) effective potential are not small compared to the 
O(v6). For the SU(3)-potential in second order O(v’*) contributions are still not 
negligible, whereas there the leading fermionic contribution is O(v4). 

Other results obtained with the effective action calculated as described here will be 
published elsewhere [3]. 
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FIG. 4. Configuration of four p/,Ss giving rise to corrections of, e.g., the effective potential. 
open semicircle denotes an anti-baryon, the full semicircle a baryon, and the line segments P*‘s. 

The 

APPENDIX A 

The contributions of terms with many p’s are suppressed with respect to 
comparable contributions without these p’s because of the smallness of the coef- 
ficients in g, , with respect to the coefftcient of the same combination of invariants in 
g,. Let us, for example, consider the configuration depicted in Fig. 1. We compare 
the value of the simplest contribution in order /? of the SU(3) effective potential (the 
O(v4) term in (4.7)) which has g,‘s on every link, to the same contribution with g,‘s 
on every link. Replacing the go’s by g,‘s results in changing the coefficients on each 
link by a factor, & in this case. Furthermore, the result has to be multiplied by the 
value of the p-configuration of Fig.4, which is (after contracting the epsilons and 
substituting .H = ull), 

F NJ1 + 3N,+ 2N;). (A.11 

Using the value a = f which is valid at j3 = 0 and 3 flavours, this equals 114. The 
factor from the changed coefficients is (h)“, resulting in a total suppression factor of 
3.42 x 10e4, which is very small. 
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